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Linearly Single Polarization Fibers with Zero
Polarization Mode Dispersion

KATSUNARI OKAMOTO, TOSHIHITO HOSAKA, AND YUTAKA SASAKI

Abstract-The optimum waveguide structure for linearly single polar-
ization fibers, which satisfies the large modal birefringence and the zero

polarization mode dispersion simultaneously, has been investigated.

The basic waveguide structure is the single-mode optical fiber that has
an elliptical core and stress-applying parts with a different expansion
coefficient from that of the cladding. Waveguide parameters, such as

index difference, core ellipticity, and cutoff wavelength, are first deter-

mined to obtain highly birefringent fibers with B = 1 X 10-5 or B =

5 X 10-5. The structure of the stress-applying parts that provides zero

polarization mode dispersion is then determined.

I. INTRODUCTION

sINGLE-mode optical fibers that can maintain a state of

polarization over a long length are desirable for use in co-

herent optical communications [1] and fiber-optic sensing

systems [2]. Single-mode fibers capable of transmitting power

in only one polarization state also have a great advantage in

interconnecting single-mode fibers and polarization-sensitive

devices such as integrated optical multiplexer and switches

[3] .

Two methods have been proposed to stabilize the state of

polarization against environmental influences. One is to

enhance the birefringence intentionally to reduce the coupling

between the linearly polarized HE~l and HEII modes [4] -

[9]. The other is to twist the low-birefringence fiber to reduce

the coupling between HE~l mode (right-handed circularly

polarized light) and HE;I mode (left-handed circularly polar-

ized light) [10]. The former is called a linearly single polariza-

tion fiber. The latter is a circularly single polarization fiber.

For the linearly single polarization fiber, many papers con-

cerning the fabrication technique and the polarization proper-

ties have been presented. Among them, the single polarization

fibers reported by Hosaka et al. have modal birefringence

B = 8.5 X 10-5 at k = 1.15 ~m, extinction ratio of 32 dB,

and minimum loss of 0.53 dB/km at A = 1.58 #m’ [8], [1 1].

On the contrary, the polarization properties for the circularly

single polarization fibers were examined using short lengths

of fibers. Therefore, the polarization characteristics of long

twisted fibers and the influence from external effects have not

yet been clarified [12].

The major disadvantage for linearly single polarization fibers

is that the polarization mode dispersion is fairly large. Polar-
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ization mode dispersions for the elliptical core fibers or stress-

induced birefringent fibers are of the order of 10-200 ps/km

[13] - [15]. The residual cross-polarized component, which

cannot be compensated for by the phase plate, arises from

the polarization mode dispersion. This causes an adverse in-

fluence on the receiver sensitivity in the coherent optical com-

munication systems [16] and the fiber-optic sensing systems.

The concept of reducing polarization mode dispersion to zero

was proposed by Tjaden [17] and Dyott et al. [18] . However,

the contribution of the stress-induced birefringence was not

considered in their analyses.

This paper presents the design of the optimum waveguide

structure for linearly single polarization fibers that provides

large modal birefringence, zero polarization mode dispersion,

and low-loss properties simultaneously. Both geometrical

anisotropy and stress-induced birefringence are taken into

account in this paper, and on the basis of these analyses, the

waveguide parameters such as index difference, core geometry,

and stress-applying structures are determined.

IL LINEARLY SINGLE POLARIZATION FIBERS

The authors consider the basic waveguide structure as being

the single-mode optical fiber that has stress-applying parts on

both sides of the core [8] (Fig. 1). The following conditions

must be satisfied simultaneously for the linearly single polariza-

tion fibers with zero polarization mode dispersion:

1) the modal birefringence should be large enough to main-

tain the input state of polarization,

2) the transmission loss should be as low as the ordinary cir-

cular symmetric fibers,

3) the polarization mode dispersion should be zero at the

operating wavelength.

In Fig. 1 the stress-applying parts exert asymmetric stress to

the core and cause strain birefringence in the core. When

borosilicate glass is used in the stress-applying parts, the boro-

silicate glass must be separated from the core by more than
five times the core radius in order to avoid loss increase due to

B203 beyond k = 1.2 pm [19], [20]. Although the core may

have an arbitrary shape, the authors will treat elliptical core

fibers for convenience in the analysis of propagation character-

istics. For the modal birefringence and polarization mode

dispersion of the elliptical core fibers with small ellipticity,

various methods of analysis have been presented by several

authors [21] -[25]. However, transmission characteristics

for elliptical core fibers with large ellipticity are not fully

understood.
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Fig. 1. Cross section of the linearly single polarization fiber.

A, Transmission Characteristics of Elliptical Core Fibers

Since the stress layer is separated from the core by more

than five times the core radius, the influence of stress layer on

the geometrical anisotropy can be ignored. Fig. 2 shows the

geometry of the elliptical core fiber. The relative difference in

refractive indexes between core and cladding A and the ellip-

ticity of the core e are defined as

a–b~=—
a

(1)

(2)

where n 1 is the refractive index of the core, rz2 is the refractive

index of the cladding, and a and b are the semimajor and semi-

minor axes of the core, respectively. The two dominant modes

of the elliptical core fibers are the HE~l (HE ~~d) mode, in

which the direction of the electric field vector lies along the

major (x-coordinate) axis [Fig. 3(a)], and the HE~l (HEW)

mode, in which the electric field vector lies along the minor

(y-coordinate) axis [Fig. 3(b)].

In calculating propagation constant, delay time, and wave-

guide dispersion, a numerical method was used based on the

point-matching principle [26]. The point-matching method is

a useful technique to analyze dispersion characteristics for

homogeneous optical fibers with deformed core boundaries.

The hybrid electromagnetic fields were expanded in terms of a

linear combination of circular harmonics (Bessel’s functions)

and the boundary conditions are imposed on the fields at a

finite number of points on the boundary. The propagation

constant is given as the eigenvalue of the determinant equation

whose elements are obtained by using Bessel’s functions.

Figs. 4-6 show the normalized propagation constant, delay

time, and waveguide dispersion as a function of normalized

frequency u for elliptical core fibers with various ellipticities.

In Figs. 4-6, the difference between HE~l and HEI1 modes

is too small to show in the figures. IVl is a group index given

by fVl = d@z,)/dlc, and normalized frequency u is defined as

for the circular guide, using semimajor axis a as the equivalent

radius, and is given by

u=knla& (3)

b n2
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a

Fig. 2. Cross section of elliptical core.
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Fig. 3. Field patterns for HE~l and HE~l modes,
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Fig. 4. Normalized propagation constant for elliptical core fiber
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Fig. 5. Normalized delay time for elliptical core fiber.

The delay time per unit length ~ and the waveguide dispersion

PW are obtained by

~-w ~ dk (ps/km)

1 1 d2~~w=—. k._._ (ps/km/nm)
C A dkz

(4)

(5)

(k= 2n/k, A is a wavelength of light in vacuum). where c is light velocity in vacuum.
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Fig. 6. Normalized wavegnide dispersion for elliptical core fiber.

B. Modal Birefringence

When glass fiber with asymmetrical waveguide structure is

subjected to stress, normalized propagation constants along

the two principal stress directions are given by [27]

/3x/k =nxo + Clux + CZIJY (6)

fiylk = nw + G U. + CI IJY (7)

where Cl and C2 denote the stress-optical coefficients, and

nxo and n~ are the effective refractive indexes of the fiber

without asymmetrical stress which are defined as

nxo = ~xo[k (8)

nw =6%/k (9)

where &o and &o denote the propagation constants for x and

y polarizations, respectively. Then a modal birefringence is

obtained from (6) and (7) by

B=/-i x-P,
—= Bg+B~

k
(lo)

Bg = (Pxo - &o)/k (11)

B~=P”(ux-uy) (12)

where Bg denotes the geometrical anisotropy, B~ denotes the

stress-induced birefringence, and P is the difference in stress-

optical coefficients which is given as [28]

P= Cl - Cz = 3.36 X 10-5 (mm2/kg). (13)

It was shown in [17], [22], and [23] that the geometrical

anisotropy of the elliptical core fibers with small ellipticity

(e<< 1) is proportional to n, A’ e. Then the relationship be-

tween geometrical anisotropy Bg and index difference A or

ellipticity e was first investigated. Fig. 7(a) shows the depen-

dency of Bg on the square of index difference multiplied by

the refractive index of the core nl AZ. In Fig. 7(a), the maxi-

mum value of Bg is plotted for each ellipticit y. That is, Bg at

u = 2.0 for e = 0.2, v = 2.4 for e= 0.4, and u = 3.0 for e= 0.6

are illustrated. Fig. 7(a) shows that the geometrical anisotropy

is proportional to n 1A2. Fig. 7(b) shows the relationship be-
tween the geometrical anisotropy and the core ellipticity when

the index difference is A = 1.0 percent. The dotted line in

Fig. 7(b) shows the line with inclination 45°. Therefore, it

is shown from Fig. 7(b) that Bg is proportional to ellipticity

when e is much less than unity, and that Bg can be expressed

as [29]

Bg=nl A2[gl(u) e+g2(u)e2 +”””] (14)
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Fig. 7. (a) Variation of geometrical anisotroPY ~g as a function of

n ~A2. (b) Variation of geometrical anisotroPY ~g as a function of e.

where gl and gz “ . “ are functions of normalized frequency u.

In this paper, the authors make use of the simple expression

which is given by

Bg = nlA2eG(v). (15)

Since Bg is not proportional to e for large ellipticities, the

higher order correction terms in (14) are put into G(u). The

dependency of G(u) on normalized frequency v is plotted in

Fig. 8 for various ellipticities.

C. Polarization Mode Dispersion

The polarization mode dispersion for optical fibers with an

asymmetrical waveguide structure is obtained by using (4) and

(10)-(12) as

‘=’.-’,=%-%)
‘%%-%)+:”(-) (16)

In deriving (16), the authors used the property that the stress-

optical coefficients are independent from wavelength [28].

The first term in (16) represents the polarization mode disper-
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Fig. 8. Normalized phase constant difference G(v) for various ellip-
ticities.

sion due to asymmetrical core geometry (Dg) and the second

represents that caused by asymmetrical stress (D,,). From

(1 1), (15), and (16), Dg is given by

‘g=32-a=:nlA2’F@)
where

F’(u) = : (uG),

(17)

(18)

Fig. 9 shows the dependency of F(v) on normalized frequency

u for various ellipticities.

Here, the difference in waveguide dispersions between the

two polarization modes is noted. Substituting (16) into (5),

the difference of waveguide dispersions is obtained as

11

(

d2(3x d2(3y
@w=pwx-pwy=c A k ~kz k dkz

)

——— .—

11

(

d2&o d20fl
k

)

=—— —— —
dkz dkz

=~~nl A2eS(v) (19)
Ci

where

s(u) = u $. (20)

The dependency of S(U) on normalized frequency u is shown

in Fig. 10.

It is known from Fig. 10 that S(U) = -1.65 for the ellipti-

cal core fiber with e = 0.2, A = 1.0 percent, and v = 2.43.

Then the difference of waveguide dispersions at A = 1.3 pm is

given from (19) as

tipw = -0.07 (ps/km/nm). (21)

Therefore, it is known that the difference in waveguide dis-

persions can be neglected in elliptical core fibers.

III. DESIGN OF THE ZERO POLARIZATION MODE

DISPERSION FIBERS

A. Guiding Design Principle

From (16) and (17), the polarization mode dispersion for
elliptical core fibers can be expressed as

D =~H1A2#(V) +$” (Ox - CTy). (22)

In order to make the polarization mode dispersion zero, the

following condition must be satisfied:

nlA2eF(v)+~ “ (OX - UY) ‘O. (23)
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Fig. 9. Normalized delay time difference F(u) for various ellipticities.
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Fig. 10. Normalized waveguide dispersion difference S(u) for various
ellipticities.

When the above condition is met, modal birefringence B is

expressed by using (1 O), (15), and (23) as

B =nl A2eG(v)+P. (ax - aY)= nlA2eH(v) (24)

where

~(v) = G(v) - F(v)= -V;. (25)

If(v) is plotted in Fig. 11 for various ellipticities.

Ulrich et al. have shown in their analysis on the bending-

induced birefringence that the magnitude of modal bire-

fringence due to bending becomes of the order of 1 X 10-6

when an optical fiber with outer diameter 2d = 125 pm is bent

by bending radius R = 1 cm [30]. Therefore, in order to

stabilize the state of polarization against the handling of opti-

cal fibers, modal birefringence of the fiber must be larger than

about 1 X 10-5. It was confirmed experimentally that in the

linearly single polarization fibers made by the VAD method

[31], modal birefringence B = 1-5 X 10-5 is sufficient to

guarantee large extinction ratios between two polarizations.

In the design of waveguide structure, two cases,B = 1 X 10-5

(case 1) and B = 5 X 10-5 (case 2), will be treated. Therefore,

the guiding design principle is as follows.
1) Determine waveguide parameters A, e, and v so that the

modal birefringence satisfies the condition B = n, A2 cH(v) =

1 X 10-s or 5 X 10-5, that is, H(v) = 1 X 10-5/nl A2e or

H(V) = 5 X 10-5 /rzl AZ e. At this time, the value nl A2 &’(v)

is given by using the above waveguide parameters.

2) Determine the stress-applying structure so as to satisfy

the condition (ax - UY) = -nl A* .eF(v)/P.
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Fig. 12. Cutoff normalized frequency Uc for elliptical core fiber.

B. Design of the Waveguide Parameters

Before carrying out a concrete design of the waveguide

parameters, cutoff normalized frequency UCfor elliptical core

fibers was investigated. The relationship between UC and e

is plotted in Fig. 12 [32]. The cutoff wavelength is given by

AC=znlaG. (26)
UC

By combining (3) and (26), the ratio of the cutoff wavelength

to the operating wavelength is given by

(27)

Therefore, it is convenient to use the normalized ratio v/vC as

the operating parameter in describing the transmission proper-

ties of single-mode fibers. In Figs. 13-15, G(v), F’(v), and H(v)

are plotted against e by using v/vC as an operating parameter.

It is necessary to determine waveguide parameters A, e, and
Vlvc so that the following conditions are satisfied:

v/v, =O.8
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Fig. 13. Normalized phase constant difference as a function of e.
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Fig. 15. Difference between normalized phase distortion and delay
distortion H(V) = G(u) – F(v) as a function of e.

1 x 10-’
H(v) = ~1A2e = QI(A, ~) for case 1

and

(28)

Fig. 16. Variation in QI = 1 x 10-s/nl A2~ as a function of ~.

H(v) =
5 x 10-5

nlAZe = Q2(A, c) for case 2. (29)

QI and Qz are functions of index difference A and ellipticity

e, and are plotted in Figs. 16 and 17 against e.

The combination of waveguide parameters A, e, and v/uC is

given by the point at which H(v) (Fig. 15) and QI (Fig. 16) in-

tersect for case 1 or the point at which H(v) and Q2 (Fig. 17)

intersect for case 2. The waveguide parameters thus obtained

are shown in Fig. 18 (case 1) and Fig. 19 (case 2). It is known

from Figs. 18 and 19 that index difference A must be greater

than about 0.4 percent for B = 1 X 10-s and A >1.0 percent

for B = 5 X 10-5. It is possible to choose any waveguide

parameters from Figs. 18 and 19 to obtain the zero polariza-

tion mode dispersion fibers.
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Fig. 21. Core radius a and ellipticity e as a function of A for operating
parameter u/uc = 0.95 (Case 2).
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0.5
U/vc = 1.0. Therefore, the stress difference in the core must

satisfy the inequality as

0.4 UX-uy <o. (31)
E

03
It is known by stress analysis on elliptical core fibers [33] that

“/.. .0 8
the stress difference in the core is positive (ox - UY> O) when

02 -’ 085
there are no stress-applying parts. Then the stress-applying

09 parts must be placed on both sides of the minor (y-coordi-
0.1 09 s

10 nate) axis of the core (Fig. 22). In Fig. 22, one-quarter of the

o entire cross section is shown, and n~ denotes the refractive
1 2 3

J (%) index of stress-applying part 219~which is the angle of stress

Fig. 19. Waveguide parameters which give modal birefringence B = part, and T1 and rz are inner and outer radius of stress part,

rslA2#(v) = 5 X 10-5 (Case2). respectively. The diameter of the fiber is 2d = 125 pm. The

variation in stress difference in the core has been investigated

When operating parameter and wavelength are set to be

V/rJc = 0.95 and X = 1.3 pm (Ac = 1.235 pm), dependencies of

core radius a and ellipticity e on the index difference A are

shown in Figs. 20 and 21.

C. Design of the Stress-Applying Structure

In the previous section, waveguide parameters to obtain

the zero polarization mode dispersion have been determined.

At the same time, the value nl A2 @’(zr) is also given by using

the above waveguide parameters. Next, the stress-applying

structure must be determined so as to satisfy the condition

ox - (JY = -; rrl AZ @’(u). (30)

From Fig. 14, it is known that F’(v) is positive except for

when the molar concentration of dopant in the stress-applying

part (borosilicate glass [34]) is increased. The relative index

difference of the stress part As is defined by

(32)

The relationships between the stress difference and the index

difference are shown in Figs. 23 and 24 for elliptical core

fibers with A = 0.5 percent, e = 0.52, and a = 5.2 urn and

A = 1.0 percent, e = 0.18, and a = 2.5 Urn, respectively.

In the calculation of stress difference, rl = 5b and rz = 10b

were set and the finite element method [33] was used. It is

shown from Figs. 23 and 24 that the stress difference (UX - UY)

decreases and changes from positive to negative as the index

difference (or molar concentration) of borosilicate glass

becomes large.
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Fig. 23. Variation of stress difference in the core as a function of index
difference –As of stress-applying layers for an elliptical core fiber
with A = 0.5 percent, e = 0.52, and a = 5.2 ym.
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Fig. 24. Variation of stress difference in the core as a function of index
difference -As of stress-applying layers for an elliptical core fiber
with A = 1.0 percent, e = 0.18, and a = 2.5 Am.

On the basis of these results, the stress-applying structure

was determined so as to satisfy the condition of (30). The cal-

culated parameters for stress-applying parts are plotted in Fig.

25 (case 1) and Fig. 26 (case 2) against the index difference

of the core.

To summarize the above investigations, the linearly single

polarization fibers with zero polarization mode dispersion can

be obtained by combination of waveguide parameters shown

in Figs. 20 and 21 and the stress-applying structures shown

in Figs. 25 and 26.

IV. CONCLUSIONS

An investigation has been made by numerical analysis on the

optimum waveguide structure of linearly single polarization

o ~.
05 1,0 15 20

J(%)

Fig. 25. Refractive index difference –A$ for stress-aPplYing laYers to
give zero polarization mode dispersion (Case 1).

o

0

o

0

0

6

B=5x105 25

~.
1 2 J(%) 3

Fig. 26. Refractive index difference –As for stress-applying layers to
give zero polarization mode dispersion (Case 2).

fibers which satisfies the zero polarization mode dispersion,

large modal birefringence, and low-loss properties simulta-

neously. Waveguide parameters, such as the index difference

in the core A, core ellipticity e, and operating parameter U/UC,

are determined to obtain highly birefringent fibers with

B=l X 10-50 rB=5X 10-5.

When borosilicate glass is used as the material of the stress-

applying parts, it must be separated from the core by more

than five times the core radius in order to prevent loss increase

due to Bz 03 beyond k = 1.2 ~m. Taking this into account,

the structure of the stress-applying parts that provides zero

polarization mode dispersion was determined. If there is no

concern about the loss increase due to B203 or the light

source in the 0.85 ~m region is used, the side-pit fibers [7], in

which the borosilicate parts are adjacent to the core, may also

be a possible candidate for linearly single polarization fibers

with zero polarization mode dispersion. However, the design

of the waveguide structure for the side-pit fibers is very com-

plicated because the existence of the borosilicate parts has

influence on both geometrical anisotropy and stress-induced

birefringence.
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