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Linearly Single Polarization Fibers with Zero
Polarization Mode Dispersion

KATSUNARI OKAMOTO, TOSHIHITO HOSAKA, aNnp YUTAKA SASAKI

Abstract—The optimum waveguide structure for linearly single polar-
ization fibers, which satisfies the large modal birefringence and the zero
polarization mode dispersion simultaneously, has been investigated.
The basic waveguide structure is the single-mode optical fiber that has
an elliptical core and stress-applying parts with a different expansion
coefficient from that of the cladding. Waveguide parameters, such as
index difference, core ellipticity, and cutoff wavelength, are first deter-
mined to obtain highly birefringent fibers with B =1 X 1075 or B =
5 X 1073, The structure of the stress-applying parts that provides zero
polarization mode dispersion is then determined.

I. INTRODUCTION

INGLE-mode optical fibers that can maintain a state of
Spolarization over a long length are desirable for use in co-
herent optical communications [1] and fiber-optic sensing
systems [2]. Single-mode fibers capable of transmitting power
in only one polarization state also have a great advantage in
interconnecting single-mode fibers and polarization-sensitive
devices such as integrated optical multiplexers and switches
[3].

Two methods have been proposed to stabilize the state of
polarization against environmental influences. One is to
enhance the birefringence intentionally to reduce the coupling
between the linearly polarized HEY; and HE{, modes {4]-
[9]. The other is to twist the low-birefringence fiber to reduce
the coupling between HE}; mode (right-handed circularly
polarized light) and HEj; mode (left-handed circularly polar-
ized light) [10]. The former is called a linearly single polariza-
tion fiber. The latter is a circularly single polarization fiber.

For the linearly single polarization fiber, many papers con-
cerning the fabrication technique and the polarization proper-
ties have been presented. Among them, the single polarization
fibers reported by Hosaka er al. have modal birefringence
B =85 X 1075 at A = 1.15 um, extinction ratio of 32 dB,
and minimum loss of 0.53 dB/km at A = 1.58 um [8], [11].
On the contrary, the polarization properties for the circularly
single polarization fibers were examined using short lengths
of fibers. Therefore, the polarization characteristics of long
twisted fibers and the influence from external effects have not
yet been clarified [12].

The major disadvantage for linearly single polarization fibers
is that the polarization mode dispersion is fairly large. Polar-
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ization mode dispersions for the elliptical core fibers or stress-
induced birefringent fibers are of the order of 10-200 ps/km
[13]-[15]. The residual cross-polarized component, which
cannot be compensated for by the phase plate, arises from
the polarization mode dispersion. This causes an adverse in-
fluence on the receiver sensitivity in the coherent optical com-
munication systems [16] and the fiber-optic sensing systems.
The concept of reducing polarization mode dispersion to zero
was proposed by Tjaden [17] and Dyott ez al. [18]. However,
the contribution of the stress-induced birefringence was not
considered in their analyses.

This paper presents the design of the optimum waveguide
structure for linearly single polarization fibers that provides
large modal birefringence, zero polarization mode dispersion,
and low-loss properties simultaneousty. Both geometrical
anisotropy and stress-induced birefringence are taken into
account in this paper, and on the basis of these analyses, the
waveguide parameters such as index difference, core geometry,
and stress-applying structures are determined.

II. LINEARLY SINGLE POLARIZATION FIBERS

The authors consider the basic waveguide structure as being
the single-mode optical fiber that has stress-applying parts on
both sides of the core [8] (Fig. 1). The following conditions
must be satisfied simultaneously for the linearly single polariza-
tion fibers with zero polarization mode dispersion:

1) the modal birefringence should be large enough to main-
tain the input state of polarization,

2) the transmission loss should be as low as the ordinary cir-
cular symmetric fibers,

3) the polarization mode dispersion should be zero at the
operating wavelength.

In Fig. 1 the stress-applying parts exert asymmetric stress to
the core and cause strain birefringence in the core. When
borosilicate glass is used in the stress-applying parts, the boro-
silicate glass must be separated from the core by more than
five times the core radius in order to avoid loss increase due to
B,0; beyond A = 1.2 um [19], [20]. Although the core may
have an arbitrary shape, the authors will treat elliptical core
fibers for convenience in the analysis of propagation character-
istics. For the modal birefringence and polarization mode
dispersion of the elliptical core fibers with small ellipticity,
various methods of analysis have been presented by several
authors [21]-[25]. However, transmission characteristics
for elliptical core fibers with large ellipticity are not fully
understood.
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STRESS APPLYING

Fig. 1. Cross section of the linearly single polarization fiber.

A. Transmission Characteristics of Elliptical Core Fibers

Since the stress layer is separated from the core by more
than five times the core radius, the influence of stress layer on
the geometrical anisotropy can be ignored. Fig. 2 shows the
geometry of the elliptical core fiber. The relative difference in
refractive indexes between core and cladding A and the ellip-
ticity of the core € are defined as

ni-n
- 2n? M
a-b
= 2
e=™ ®

where #, is the refractive index of the core, n, is the refractive
index of the cladding, and a and b are the semimajor and semi-
minor axes of the core, respectively. The two dominant modes
of the elliptical core fibers are the HEY; (HE$®) mode, in
which the direction of the electric field vector lies along the
major (x-coordinate) axis [Fig. 3(a)], and the HEY; (HE{}™"
mode, in which the electric field vector lies along the minor
(y-coordinate) axis [Fig. 3(b)].

In calculating propagation constant, delay time, and wave-
guide dispersion, a numerical method was used based on the
point-matching principle [26]. The point-matching method is
a useful technique to analyze dispersion characteristics for
homogeneous optical fibers with deformed core boundaries.
The hybrid electromagnetic fields were expanded in terms of a
linear combination of circular harmonics (Bessel’s functions)
and the boundary conditions are imposed on the fields at a
finite number of points on the boundary. The propagation
constant is given as the eigenvalue of the determinant equation
whose elements are obtained by using Bessel’s functions.

Figs. 4-6 show the normalized propagation constant, delay
time, and waveguide dispersion as a function of normalized
frequency v for elliptical core fibers with various ellipticities.
In Figs. 4-6, the difference between HEY; and HEY; modes
is too small to show in the figures. N, is a group index given
by N; = d(kn,)/dk, and normalized frequency v is defined as
for the circular guide, using semimajor axis « as the equivalent
radius, and is given by

v=knav2A

(k = 2m/ X, \ is a wavelength of light in vacuum).
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Fig. 2. Cross section of elliptical core.
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Fig. 3. Field patterns for HEJfI and HE{; modes.
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Fig. 4. Normalized propagation constant for elliptical core fiber.
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Fig. 5. Normalized delay time for elliptical core fiber.

The délay time per unit length 7 and the waveguide dispersion
P are obtained by

1dp

r=2 L sy @
11 4?2
pw=t kS (osfkmjnm) )

where ¢ is light velocity in vacuum.
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Fig. 6. Normalized waveguide dispersion for elliptical core fiber.

B. Modal Birefringence

When glass fiber with asymmetrical waveguide structure is
subjected to stress, normalized propagation constants along
the two principal stress directions are given by [27]

Bxlk =nyo + Cr 0 +Cy0,

©)
(M

where C; and C, denote the stress-optical coefficients, and
hyo and nyy, are the effective refractive indexes of the fiber
without asymmetrical stress which are defined as

Axo = on /k (8)
nyo = Byolk )

where By, and §,, denote the propagation constants for x and
y polarizations, respectively. Then a modal birefringence is
obtained from (6) and (7) by

By/k= Ny +C, 0y +C,0,

B=ﬁx;€ﬁy =B, + B, (10)
Bg'_'(ﬁxo - 5y0)/k (11)
By=P-(ox - o) (12)

where B, denotes the geometrical anisotropy, B; denotes the
stress-induced birefringence, and P is the difference in stress-
optical coefficients which is given as [28]

P=C,-C, =336X10"° (mm?/kg). (13)

It was shown in [17], [22], and [23] that the geometrical
anisotropy of the elliptical core fibers with small ellipticity
(e << 1) is proportional to 7, A%¢. Then the relationship be-
tween geometrical anisotropy B, and index difference A or
ellipticity € was first investigated. Fig. 7(a) shows the depen-
dency of B, on the square of index difference multiplied by
the refractive index of the core n; A%, In Fig. 7(a), the maxi-
mum value of By is plotted for each ellipticity. That is, B, at
v=20fore=02,v=24fore=04,andv=3.0fore=0.6
are illustrated. Fig. 7(a) shows that the geometrical anisotropy
is proportional to n; A*. Fig. 7(b) shows the relationship be-
tween the geometrical anisotropy and the core ellipticity when
the index difference is A = 1.0 percent. The dotted line in
Fig. 7(b) shows the line with inclination 45°. Therefore, it
is shown from Fig. 7(b) that B, is proportional to ellipticity
when € is much less than unity, and that By can be expressed
as [291

By=n A [g1(v) e+ (v) €+ ] (14)
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Fig. 7. (a) Variation of geometrical anisotropy Bg as a function of
nyA2. (b) Variation of geometrical anisotropy Bgasa function of e.

where g; and g, - - - are functions of normalized frequency v.
In this paper, the authors make use of the simple expression
which is given by

B, =n;A?eG (v). (15

Since B, is not proportional to € for large ellipticities, the
higher order correction terms in (14) are put into G(v). The
dependency of G(v) on normalized frequency v is plotted in
Fig. 8 for various ellipticities.

C. Polarization Mode Dispersion

The polarization mode dispersion for optical fibers with an
asymmetrical waveguide structure is obtained by using (4) and
(10)(12) as

d
D='rx—7'y=—1-<—ﬁx——£@1>

e \ak  ak
1 [(dByy dByw\ P
= — — i + —_— — .
c (dk ak )t ex o) (16)

In deriving (16), the authors used the property that the stress-
optical coefficients are independent from wavelength [28].
The first term in (16) represents the polarization mode disper-
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Normalized Frequency v

Fig. 8. Normalized phase constant difference G(v) for various ellip-
ticities.

sion due to asymmetrical core geometry (D,) and the second
represents that caused by asymmetrical stress (Dg). From
(11), (15), and (16), D, is given by

_ L (o B\ _1 .,
Dy = - ( P ) A niA%eF(v) an
where
d
F)= 5 G). (18)

Fig. 9 shows the dependency of F(v) on normalized frequency
v for various ellipticities.

Here, the difference in waveguide dispersions between the
two polarization modes is noted. Substituting (16) into (5),
the difference of waveguide dispersions is obtained as

11/ d*,  d*B,
apw=pwx_pwy=;—)\_ <k k> _kdkz)
11 d®B d*e\ 11
= (k—22 == —n A%eS 19
c?\( i dkz) SR mASO  19)
* where
dF
S(w)=v—. 0
@=v5 (20)

The dependency of S(v) on normalized frequency v is shown
in Fig. 10.

It is known from Fig. 10 that S(v) = -1.65 for the ellipti-
cal core fiber with € = 0.2, A = 1.0 percent, and v = 2.43.
Then the difference of waveguide dispersions at X = 1.3 um is
given from (19) as

8pw = -0.07 (ps/km/nm). (#3))

Therefore, it is known that the difference in waveguide dis-
persions can be neglected in elliptical core fibers.

III. DESIGN OF THE ZERO POLARIZATION MODE
Di1SPERSION FIBERS
A. Guiding Design Principle
From (16) and (17), the polarization mode dispersion for
elliptical core fibers can be expressed as

1 P
== A?eF(v) + — (04 - 0). 22)

In order to make the polarization mode dispersion zero, the
following condition must be satisfied:

niA*eF(@)+P - (o, - 0y)=0. (23)
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Fig. 9. Normalized delay time difference F(v) for various ellipticities.
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Fig. 10. Normalized waveguide dispersion difference S(v) for various
ellipticities.

When the above condition is met, modal birefringence B is
expressed by using (10), (15), and (23) as

B=n;A’eG(v) + P (0 - 0,) = n; A’ el (v) 249
where
H(v)=G(v)—F(v)=—vgg. (25)

H(v) is plotted in Fig. 11 for various ellipticities.

Ulrich et al. have shown in their analysis on the bending-
induced birefringence that the magnitude of modal bire-
fringence due to bending becomes of the order of 1 X 107¢
when an optical fiber with outer diameter 2d = 125 um is bent
by bending radius R = 1 cm [30]. Therefore, in order to
stabilize the state of polarization against the handling of opti-
cal fibers, modal birefringence of the fiber must be larger than
about 1 X 1075, It was confirmed experimentally that in the
linearly single polarization fibers made by the VAD method
[31], modal birefringence B = 1-5 X 1075 is sufficient to
guarantee large extinction ratios between two polarizations.

In the design of waveguide structure, two cases,B=1X 107°
(case 1) and B =5 X 107° (case 2), will be treated. Therefore,
the guiding design principle is as follows,

1) Determine waveguide parameters A, €, and v so that the
modal birefringence satisfies the condition B = n; A’eH(v) =
1 X 107 or 5 X 1075, that is, H(v) = 1 X 1075 /n; A%¢ or
H(V)=5X 107%/n; A%¢. At this time, the value ny A% eF(v)
is given by using the above waveguide parameters.

2) Determine the stress-applying structure so as to satisfy
the condition (o, ~ 0,) = -1, A?eF (v)/P.
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Fig. 12. Cutoff normalized frequency v, for elliptical core fiber.

B. Design of the Waveguide Parameters

Before carrying out a concrete design of the waveguide
parameters, cutoff normalized frequency v, for elliptical core
fibers was investigated. The relationship between v, and e
is plotted in Fig. 12 [32]. The cutoff wavelength is given by

2
A, =v—”n1a\/2A.
c

By combining (3) and (26), the ratio of the cutoff wavelength
to the operating wavelength is given by

(26)

o 27
Therefore, it is convenient to use the normalized ratio vfv, as
the operating parameter in describing the transmission proper-
ties of single-mode fibers. In Figs. 13-15, G(v), F(v), and H(v)
are plotted against e by using v/v, as an operating parameter.

It is necessary to determine waveguide parameters A, €, and
vfv, so that the following conditions are satisfied:

_1X107

H(v) mAte =0,(A,¢) for case 1 (28)
and
5X 1075
H(v) = —nl—Kz_e_ =0,(A,e) for case 2. (29)

0, and Q, are functions of index difference A and ellipticity
€, and are plotted in Figs. 16 and 17 against e.

The combination of waveguide parameters A, e, and v/, is
given by the point at which H(v) (Fig. 15) and Q, (Fig. 16) in-
tersect for case 1 or the point at which H(v) and 0, (Fig. 17)
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o
)

intersect for case 2. The waveguide parameters thus obtained
are shown in Fig. 18 (case 1) and Fig. 19 (case 2). It is known
from Figs. 18 and 19 that index difference A must be greater
than about 0.4 percent for B =1 X 1075 and A > 1.0 percent
for B = 5 X 107°. It is possible to choose any waveguide
parameters from Figs. 18 and 19 to obtain the zero polariza-
tion mode dispersion fibers.
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When operating parameter and wavelength are set to be
vfv, =095 and A = 1.3 um (A, = 1.235 um), dependencies of
core radius @ and ellipticity € on the index difference A are
shown in Figs. 20 and 21.

C. Design of the Stress-Applying Structure

In the previous section, waveguide parameters to obtain
the zero polarization mode dispersion have been determined.
At the same time, the value 1y A%eF(v) is also given by using
the above waveguide parameters. Next, the stress-applying
structure must be determined so as to satisfy the condition

1
Ox = 0y = —;nlAz eF(v). (30)

From Fig. 14, it is known that F(v) is positive except for

B=1x10"
5-
af {os
{1 €
E 3t
E 3 06
" a 1
2r 0.4
1 € 102
0 065 10 15 20 ©
A1%)

Fig. 20. Core radius « and ellipticity e as a function of A for operating
parameter vfv, = 0.95 (Case 1).

41(%)

Fig. 21. Core radius ¢ and ellipticity € as a function of A for operating
parameter vfv, = 0.95 (Case 2).

vfv, = 1.0. Therefore, the stress difference in the core must
satisfy the inequality as

(31)
It is known by stress analysis on elliptical core fibers [33] that
the stress difference in the core is positive (05 - 0, > 0) when
there are no stress-applying parts. Then the stress-applying
parts must be placed on both sides of the minor (y-coordi-
nate) axis of the core (Fig. 22). In Fig. 22, one-quarter of the
entire cross section is shown, and ng denotes the refractive
index of stress-applying part 26, which is the angle of stress
part, and r; and 7, are inner and outer radius of stress part,
respectively. The diameter of the fiber is 2d = 125 um. The
variation in stress difference in the core has been investigated
when the molar concentration of dopant in the stress-applying
part (borosilicate glass [34]) is increased. The relative index
difference of the stress part A, is defined by

ox ~ 0, <0.

2 _ 2
_hs —n

= om (32)

The relationships between the stress difference and the index
difference are shown in Figs. 23 and 24 for elliptical core
fibers with A = 0.5 percent, € = 0.52, and @ = 5.2 um and
A =1.0 percent, € =0.18, and a = 2.5 um, respectively.

In the calculation of stress difference, 7, = 5b and #, = 10b
were set and the finite element method [33] was used. It is
shown from Figs. 23 and 24 that the stress difference (o, - 0;)
decreases and changes from positive to negative as the index
difference (or molar concentration) of borosilicate glass
becomes large.
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Fig. 24. Variation of stress difference in the core as a function of index
difference —Ag of stress-applying layers for an elliptical core fiber
with A = 1.0 percent, ¢ = 0.18, and @ = 2.5 pm.

On the basis of these results, the stress-applying structure
was determined so as to satisfy the condition of (30). The cal-
culated parameters for stress-applying parts are plotted in Fig.
25 (case 1) and Fig. 26 (case 2) against the index difference
of the core.

To summarize the above investigations, the linearly single
polarization fibers with zero polarization mode dispersion can
be obtained by combination of waveguide parameters shown
in Figs. 20 and 21 and the stress-applying structures shown
in Figs. 25 and 26.

IV. CONCLUSIONS

An investigation has been made by numerical analysis on the
optimum waveguide structure of linearly single polarization
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fibers which satisfies the zero polarization mode dispersion,
large modal birefringence, and low-loss properties simulta-
neously. Waveguide parameters, such as the index difference
in the core A, core ellipticity ¢, and operating parameter v/v,,,
are determined to obtain highly birefringent fibers with
B=1X107% orB=5X 1075,

When borosilicate glass is used as the material of the stress-
applying parts, it must be separated from the core by more
than five times the core radius in order to prevent loss increase
due to B,O; beyond A = 1.2 yum. Taking this into account,
the structure of the stress-applying parts that provides zero
polarization mode dispersion was determined. If there is no
concern about the loss increase due to B,O3 or the light
source in the 0.85 um region is used, the side-pit fibers [7], in
which the borosilicate parts are adjacent to the core, may also
be a possible candidate for linearly single polarization fibers
with zero polarization mode dispersion. However, the design
of the waveguide structure for the side-pit fibers is very com-
plicated because the existence of the borosilicate parts has
influence on both geometrical anisotropy and stress-induced
birefringence.
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